Architektura Game Boy Advance

Praktyczna analiza autorstwa Rodrigo Copetti

Przetłumaczone przez LunaDook & MoonbowPlushie

Edycja klasyczna - Ostatnio zaktualizowany: 18 września 2022

Dostępne języki: 🇬🇧 - English, 🇵🇱 - Polski, 👋 - Dodaj tłumaczenie


O tej edycji

Edycja „klasyczna” jest wersją alternatywną dla ‘nowoczesnego’ odpowiednika. Do działania nie wymaga JavaScript, najnowocześniejszego CSS ani zawiłego HTML, co czyni go idealnym dla czytelników korzystających z narzędzi ułatwień dostępu lub starszych przeglądarek internetowych. Z drugiej strony użytkownicy e-booków mogą teraz sprawdzić edycję e-bookow.

Ta edycja jest identyczna merytorycznie. Interaktywne widżety zostały uproszczone do pracy z czystym HTML, chociaż będą oferować link do oryginalnego artykułu na wypadek, gdyby czytelnik chciał wypróbować 'pełną wersję'.

Jak zawsze ten artykuł jest dostępny na Github, aby umożliwić czytelnikom zgłaszanie błędów lub proponowanie zmian. Dostępne są również pomocnicze materiały do czytania które pomogą Ci zrozumieć serię. Autor przyjmuje również darowizny, aby poprawić jakość bieżących i nadchodzących artykułów.


Spis Treści

  1. Zdjęcia pomocnicze
  2. Szybkie wprowadzenie
  3. CPU
    1. Co nowego?
    2. Lokalizacje pamięci
    3. Stawanie się Game Boy Color
  4. Grafika
    1. Organizowanie treści
    2. Konstruowanie klatki
      1. Kafelki
      2. Tła
      3. Sprite’y
      4. Rezultat
    3. Poza Kafelkami
  5. Dźwięk
    1. Funkcjonalność
      1. PCM
      2. PSG
      3. Połączone
    2. Podwójna korzyść
  6. System Operacyjny
  7. Gry
    1. Dostęp do danych kartridża
    2. Przestrzeń RAM kartridża
    3. Akcesoria
  8. Przeciwdziałanie-Piractwu & Homebrew
    1. Flashcarty
  9. To wszystko ludziska
  10. Referencing
  11. Źródła / Czytaj Dalej
  12. Współpraca
  13. Dziennik zmian

Zdjęcia pomocnicze

Modele

Image
Oryginalny Game Boy Advance.
Wydany 21.03.2001 w Japonii, 11.06.2001 w Ameryce i 22.06.2001 w Europie.

Płyta Główna

Image
Płyta Główna
Pokazuję wersję '03'. Zauważ, że 'AGB' to identyfikator modelu Game Boy Advance.
Gniazdo kartridża i wzmacniacz audio znajdują się z tyłu.
Image
Płyta główna z zaznaczonymi ważnymi częściami

Diagram

Image
Schemat głównej architektury
Każda magistrala danych jest oznaczona jej szerokością.
Pokazany układ AGB Game Pak nie zawiera mapera (ponieważ nowy procesor jest w stanie obsłużyć znacznie więcej pamięci), chociaż gry z dużym ROM mogą nadal go używać.

Szybkie wprowadzenie

Wewnętrzna konstrukcja Game Boy Advance jest dość imponująca jak na przenośną konsolę, która działa na dwóch bateriach AA.

Ta konsola będzie nadal korzystać z popisowego procesora graficznego firmy Nintendo. Ponadto wprowadzi ona stosunkowo nowy CPU od brytyjskiej firmy, która w nadchodzących latach wzrośnie w popularności.


CPU

Większość komponentów jest połączona w jeden pakiet o nazwie CPU AGB. Ten pakiet zawiera dwa zupełnie różne procesory:

Zauważ, że oba procesory nigdy nie będą działać w tym samym czasie ani nie będą wykonywać żadnego fantazyjnego współprzetwarzania. Jedynym powodem uwzględnienia bardzo starego Sharpa jest wsteczna zgodność.

Co nowego?

Zanim ARM Holdings (obecnie ‘Arm’) stał się niezwykle popularny w świecie smartfonów, licencjonował swoje projekty procesorów do zasilania komputerów Acorn, Newtona Apple, telefonów Nokii i Panasonic 3DO. Wybrany przez Nintendo procesor, ARM7TDMI, oparty jest na wcześniejszej konstrukcji ARM710 i zawiera [1]:

Co więcej, ten rdzeń zawiera kilka rozszerzeń, do których odwołuje się jego nazwa (TDMI):

Lokalizacje pamięci

Dołączenie Thumb miało szczególnie duży wpływ na ostateczny projekt tej konsoli. Nintendo połączyło magistrale 16-bitowe i 32-bitowe między różnymi modułami, aby obniżyć koszty, jednocześnie zapewniając programistom niezbędne zasoby do optymalizacji kodu.

Image
Architektura pamięci tego systemu.

Pamięć do wykorzystania jest podzielona na następujące lokalizacje (w kolejności od najszybszej do najwolniejszej) [3]:

Chociaż ta konsola była sprzedawana jako system 32-bitowy, większość jej pamięci jest dostępna tylko przez 16-bitową magistralę, co oznacza, że gry będą w większości używać zestawu instrukcji Thumb, aby uniknąć wydawania dwóch cykli na pobieranie instrukcji. Tylko w bardzo wyjątkowych okolicznościach (tj. konieczności użycia instrukcji nie znajdujących się na Thumb podczas przechowywania ich w IWRAM) programiści skorzystają z zestawu instrukcji ARM.

Stawanie się Game Boy Color

Oprócz włączenia osprzętu GBC (Sharp SM83, oryginalny BIOS, tryby audio i wideo, kompatybilne gniazdo kartridży itd.), do zapewnienia kompatybilności wstecznej wymagane są dwie dodatkowe funkcje.

Od strony sprzętowej konsola opiera się na przełącznikach, aby wykryć, czy włożono kartridż Game Boy lub Game Boy Color. Detektor kształtu w gnieździe kartridża skutecznie identyfikuje typ kartridża i pozwala procesorowi odczytać jego stan. Zakłada się, że jakiś element CPU AGB odczytuje tę wartość i automatycznie wyłącza sprzęt, który nie jest potrzebny w trybie GBC.

Od strony oprogramowania istnieje specjalny 16-bitowy rejestr o nazwie REG_DISPCNT, który może zmieniać wiele właściwości wyświetlacza, ale jeden z jego bitów ustawia konsolę w ‘tryb GBC’ [5]. Początkowo miałem trudności ze zrozumieniem, kiedy dokładnie GBA próbuje zaktualizować ten rejestr. Na szczęście niektórzy programiści pomogli to wyjaśnić:

Myślę, że to, co dzieje się podczas rozruchu GBC, polega na tym, że sprawdza przełącznik (czytelny pod adresem REG_WAITCNT 0x4000024), zanika (bardzo szybkie zanikanie, trudne do zauważenia), a następnie w końcu przełącza się w tryb GBC (BIOS zapisuje do REG_DISPCNT 0x4000000), zatrzymując ARM7.

Jedynym brakującym elementem układanki jest to, co by się stało, gdyby usunięto część obudowy kartridża GBC, aby przełącznik nie był już wciskany, a następnie programowo przełączono tryb na tryb GBC. W tym przypadku może pomóc tryb Multi-boot. Nie jestem pewien, czy przełącznik musi być wciśnięty, aby magistrala kartridża GBC działała poprawnie, czy po prostu działa. Jestem skłonny założyć, że przełącznik jest niezbędny do działania magistrali, ale to tylko przypuszczenie.

Dan Weiss (znany jako Dwedit, obecny opiekun PocketNES i Goomba Color)


Grafika

Zanim zaczniemy, znajdziesz w systemie mieszankę SNES-a i Game Boy’a, a rdzeniem graficznym nadal jest dobrze znany silnik 2D o nazwie PPU. Zalecam przeczytanie tych artykułów przed kontynuowaniem, ponieważ powrócę do wielu wcześniej wyjaśnionych koncepcji.

W porównaniu z poprzednimi Game Boy’ami mamy teraz kolorowy ekran LCD, który może wyświetlać do 32 768 kolorów (15 bitów). Ma rozdzielczość 240x160 pikseli i częstotliwość odświeżania ~60Hz.

Organizowanie treści

Image
Architektura pamięci PPU.

Mamy następujące regiony pamięci, w których możemy dystrybuować naszą grafikę:

Konstruowanie klatki

Jeśli czytałeś poprzednie artykuły, GBA będzie Ci znajomy, chociaż istnieją dodatkowe funkcje, które mogą Cię zaskoczyć, i nie zapominaj, że ta konsola działa na dwóch bateriach AA.

Wypożyczę grafikę z Sonic Advance 3 firmy Sega, aby pokazać, jak składa się klatka.

Kafelki

Image
Ten blok jest wykonany z Kafelków 4bpp.
Image
Możesz zauważyć tutaj dziwne pionowe wzory, nie są to grafiki, ale ‘Mapy Kafelków’ (patrz następna sekcja).
Image
Ten blok jest zarezerwowany dla sprite’ów.
Charblocks znalezione w pamięci VRAM.

Kafelki GBA są ściśle bitmapami 8x8 pikseli, mogą używać 16 kolorów (4bpp) lub 256 kolorów (8bpp). Kafelki 4bpp zajmują 32 bajty, a 8bpp zajmują 64 bajty.

Kafelki mogą być przechowywane w dowolnym miejscu w pamięci VRAM, jednak PPU chce je pogrupować w charblock’i: Regiony 16 KB. Każdy blok jest zarezerwowany dla określonego typu warstwy (tła i sprite’ów), a programiści decydują, gdzie zaczyna się każdy charblock. Może to spowodować pewne nakładanie się, co w konsekwencji umożliwia dwóm charblock’om współdzielenie tych samych kafelków.

Ze względu na rozmiar charblock’a, w jednym bloku można przechowywać do 256 płytek 8bpp lub 512 płytek 4bpp. Dozwolonych jest do sześciu charblock’ów, które łącznie wymagają 96 KB pamięci: dokładnej ilości pamięci VRAM, jaką ma ta konsola.

Tylko cztery charblock’i mogą być użyte jako tła, a dwa mogą być użyte jako sprite’y.

Tła

Image
Warstwa Tła 0 (BG0).
Image
Warstwa Tła 2 (BG2).
Image
Warstwa Tła 3 (BG3).
Ta konkretna warstwa będzie przesuwana poziomo na pewnych liniach skanowania, aby zasymulować efekty wody.
Używane są statyczne warstwy tła.

Warstwa tła tego systemu znacznie się poprawiła od czasu Game Boy Color. W końcu zawiera niektóre funkcje znalezione w Super Nintendo (pamiętasz przekształcenia afiniczne?).

PPU może narysować do czterech warstw tła. Możliwości każdego z nich będą zależeć od wybranego trybu działania [6]:

Każda warstwa ma wymiar do 512x512 pikseli. Jeśli jest afiniczna, to będzie miała rozmiar do 1024x1024 pikseli.

Fragment danych definiujący warstwę tła to Mapa Kafelków. Aby wdrożyć ją w sposób zrozumiały dla PPU, programiści używają screenblock’ów, konstrukcji definiującej części warstwy tła (32x32 kafelki). Screenblock zajmuje tylko 2 KB, ale do zbudowania całej warstwy będzie potrzebny więcej niż jeden. Programiści mogą umieścić je gdziekolwiek wewnątrz charblocków tła, co oznacza, że nie wszystkie wpisy kafelków będą zawierały grafikę!

Sprite’y

Image
Renderowana warstwa Sprite

Rozmiar sprite może mieć szerokość do 64x64 pikseli, jak na tak mały ekran będą okupywać jego dużą część.

Jeśli to nie było wystarczające, PPU może teraz zastosować transformacje afiniczne do sprite’ów!

Wpisy sprtie mają szerokość 32 bitów, a ich wartości można podzielić na dwie grupy:

Rezultat

Image
Wszystkie warstwy scalone (Tada!).

Jak zawsze, PPU automatycznie połączy wszystkie warstwy, ale to jeszcze nie koniec! System może również zastosować kilka efektów na tych warstwach:

Z drugiej strony, aby zaktualizować klatkę, dostępne jest wiele opcji:

Poza Kafelkami

Czasami możemy chcieć utworzyć tło, z którego tile engine nie będzie w stanie narysować wszystkich wymaganych grafiki. Nowoczesne konsole rozwiązały ten problem, implementując architekturę bufora-klatek, ale nie jest to możliwe, gdy jest bardzo mało RAM… Cóż, tak się składa, że GBA ma 96 KB pamięci VRAM, co wystarcza do przydzielenia bitmapy o wymiarach naszego ekranu LCD.

Dobrą wiadomością jest to, że PPU faktycznie implementuje tę funkcjonalność, uwzględniając trzy dodatkowe tryby, zwane trybami bitmapy [7]:

Powodem posiadania dwóch bitmap jest włączenie przewracania-stron: Rysowanie na wyświetlanej bitmapie może ujawnić pewne dziwne artefakty podczas procesu. Jeśli zamiast tego manipulujemy inną, żaden z błędów nie zostanie pokazany użytkownikowi. Po zakończeniu drugiej bitmapy, PPU można zaktualizować, aby wskazywał na drugą, skutecznie zamieniając wyświetlaną klatkę.

Image
Super Monkey Ball Jr. (2002).
Tryb bitmapowy umożliwił procesorowi dostarczenie podstawowej grafiki 3D do scenerii.
Obiekty pierwszego planu to sprite’y (oddzielna warstwa).
Image
Demo Tonc’a.
Renderowana bitmapa z kilkoma prymitywami.
Zauważ, że ekran nie pokazuje znaczących wzorów generowanych przez silniki kafelków.
Image
SpongeBob Kanciastoporty Nickelodeon’a.
Odcinek rozpowszechniany jako kartridż GBA Video (oczywiście był mocno skompresowany).
Przykłady programów wykorzystujących tryby bitmapowe.

Ogólnie rzecz biorąc, brzmi to jak najnowocześniejsza funkcja, jednak większość gier trzymała się silnika kafelków. Czemu? Ponieważ w praktyce kosztuje dużo zasobów procesora.

Widzisz, podczas korzystania z silnika kafelków procesor może delegować większość obliczeń do układu graficznego. W przeciwieństwie do tego, system buforowania klatki, który zapewnia PPU, ogranicza się tylko do wyświetlania tego segmentu pamięci jako pojedynczej warstwy tła, co oznacza brak indywidualnych transformacji afinicznych, warstw lub efektów, chyba że procesor je obliczy. Ponadto, bufor-klatki zajmuje 80 KB pamięci, więc tylko 16 KB (połowa) jest dostępnych do przechowywania kafelków sprite’ów.

Z tego powodu te tryby są używane oszczędnie, na przykład do odtwarzania wideo (Game Boy Advance Video całkowicie na tym polegał) lub renderowania Geometrii 3D za pomocą procesora.


Dźwięk

GBA posiada 2-kanałowy odtwarzacz próbek, który działa w połączeniu ze starszym systemem dźwięku Game Boy’a.

Funkcjonalność

Oto podział na komponenty audio przy użyciu Sonic Advance 2 jako przykładu:

PCM

Kanały tylko PCM.

Nowy system dźwiękowy może teraz odtwarzać próbki PCM, udostępnia dwa kanały o nazwie Direct Sound, w których odbiera próbki za pomocą kolejki FIFO (zaimplementowany jako 16-bajtowy bufor).

Próbki są 8-bitowe i znakowane (zakodowane w wartościach od -128 do 127). Domyślna częstotliwość próbkowania to 32 kHz, chociaż zależy ona od każdej gry: ponieważ wyższa częstotliwość oznacza większy rozmiar i więcej cykli procesora, nie każda gra będzie zużywać tę samą ilość zasobów na zasilanie układu audio.

DMA jest niezbędne, aby uniknąć zapychania cykli procesora. Dostępne są również liczniki czasu, które umożliwiają synchronizację z kolejką.

PSG

Kanały tylko PSG.

Chociaż podsystem Game Boy nie współdzieli swojego procesora, daje dostęp do PSG. Ze względu na kompatybilność jest to ten sam projekt, który można znaleźć w oryginalnym Game Boy’u. Wcześniej napisałem ten artykuł, który szczegółowo omawia każdy kanał.

Większość gier GBA używała go do akompaniamentu lub efektów. Późniejsze tytuły zoptymalizują swoją muzykę pod kątem PCM, a PSG nie będzie używane.

Połączone

Tada!

Wreszcie wszystko jest automatycznie miksowane i przesyłane przez gniazdo głośnika/słuchawek.

Mimo że GBA ma tylko dwa kanały PCM, niektóre gry mogą magicznie odtwarzać więcej niż dwie równoczesne próbki. Jak to możliwe? Cóż, chociaż posiadanie tylko dwóch kanałów może wydawać się nieco słabe na papierze, główny procesor może wykorzystać niektóre ze swoich cykli do zapewnienia zarówno sekwencjonowania dźwięku, jak i miksowania [8] (co powinno dać wyobrażenie o tym, jak potężny jest ARM7!). Ponadto w sekcji ‘System Operacyjny’ dowiesz się, że BIOS ROM zawiera sekwencer audio!

Podwójna korzyść

Niektóre gry szły dalej w dualizmie PCM-PSG i ‘zamieniały’ wiodący układ w zależności od kontekstu.

W tej grze (Mother 3) gracz może wejść do dwóch różnych pokoi, jednego stosunkowo normalnego i drugiego z atmosferą nostalgiczną. W zależności od pokoju, w którym znajduje się postać, ten sam utwór będzie brzmieć nowocześnie lub 8bit-owo.

Normalny pokój, używa tylko PCM.
Nostalgiczny pokój, PSG prowadzi melodię.

System Operacyjny

Wektor resetowania ARM7 to 0x00000000, co wskazuje na 16 KB BIOS ROM. Oznacza to, że Game Boy Advance najpierw uruchamia się z BIOS-u, który z kolei pokazuje ikoniczny ekran powitalny, a następnie decyduje, czy załadować grę, czy nie.

Ten ROM przechowuje również procedury oprogramowania, które gry mogą wywoływać w celu uproszczenia pewnych operacji i zmniejszenia rozmiaru kartridża [9]. Obejmują one:

BIOS jest podłączony przez 32-bitową magistralę i jest zaimplementowany za pomocą kombinacji instrukcji Arm i Thumb, chociaż te ostatnie są najbardziej widoczne.

Pamiętaj też, że wszystko to będzie działać tylko na ARM7. Innymi słowy, nie ma dostępnej akceleracji sprzętowej, która przyspieszałaby te operacje. Dlatego Nintendo udostępniło całą tę funkcjonalność za pomocą oprogramowania.


Gry

Programowanie dla GBA było podobne do SNES z dodatkowymi zaletami tworzenia gier na początku 2000 roku: ustandaryzowane języki wysokiego poziomu, lepsze kompilatory, szybsze procesory RISC, niezastrzeżone komputery do tworzenia, stosunkowo lepsza dokumentacja i… Dostęp do Internetu!

Programy są w większości napisane w C z sekcjami krytycznymi dla wydajności w asemblerze (ARM i Thumb), aby zaoszczędzić cykle. Nintendo dostarczyło SDK z bibliotekami i kompilatorami.

Gry są dystrybuowane w nowym, zastrzeżonym kartridżu o nazwie Game Pak.

Dostęp do danych kartridża

Chociaż ARM7 ma 32-bitową magistralę adresową, do modułu podłączone są tylko 24 linie adresowe. Powinno to oznaczać, że w module można uzyskać dostęp do 16 MB bez konieczności korzystania z programu mapującego, jednak oficjalna dokumentacja stwierdza, że 32 MB danych modułu jest mapowanych w pamięci. Więc co się tutaj dzieje? Prawda jest taka, że Gamepak używa adresów 25-bitowych (co wyjaśnia blok 32 MB), ale jego najniższy bit jest ustawiony na zero, więc ustawione są tylko 24 pozostałe bity. Tak działa adresowanie Gamepak.

Czy to oznacza, że dane znajdujące się pod nieparzystymi adresami (z najmniej znaczącym bitem na ‘1’) będą niedostępne? Nie, ponieważ magistrala danych jest 16-bitowa: Dla każdego transferu, CPU/DMA pobierze zlokalizowany bajt plus następny, umożliwiając odczytanie zarówno adresów parzystych, jak i nieparzystych. Jak widać, jest to po prostu kolejna praca inżynierska, która w pełni wykorzystuje możliwości sprzętu przy jednoczesnym obniżeniu kosztów.

Przestrzeń RAM kartridża

Aby przechowywać zapisy, Game Pak’i mogą zawierać [10]:

Akcesoria

Słynny Game Boy Link Cable zapewniał możliwość gry wieloosobowej. Dodatkowo kabel ma specjalną funkcję wewnętrznie znaną jako Multi-boot: Inna konsola (GBA lub GameCube) może wysłać działającą grę do pamięci EWRAM konsoli-odbiornika, a następnie ta druga uruchomi ją (zamiast potrzebować kartridżu).


Przeciwdziałanie-Piractwu & Homebrew

Ogólnie rzecz biorąc, używanie zastrzeżonych kartridży stanowiło dużą barierę w porównaniu z ciągłą grą w kotka i myszkę, z którą musieli walczyć inni producenci konsol podczas korzystania z CD-ROM-u.

Aby walczyć z bootlegami (nieautoryzowanymi reprodukcjami), BIOS GBA wbudował ten sam proces uruchamiania, który można znaleźć w oryginalnym Game Boy’u.

Flashcarty

Gdy pamięć masowa stała się bardziej przystępna cenowo, na rynku pojawił się nowy typ kartridża. Flashcarty wyglądały jak zwykłe Game Pak’i, ale miały pamięć wielokrotnego zapisu lub gniazdo kart pamięci, które umożliwiało uruchamianie ROM-ów z grami. Koncepcja ta nie jest w rzeczywistości nowa, deweloperzy stosowali wewnętrznie podobne narzędzia do testowania swoich gier na prawdziwej konsoli (i producenci dostarczyli sprzęt, aby to umożliwić).

Wcześniejsze rozwiązania obejmowały pamięć NOR Flash z możliwością nagrywania (nieprzekraczającą 32 MB) i SRAM z podtrzymaniem bateryjnym. Aby przesłać pliki binarne do kartridża, produkt zawierał kabel Link-do-USB używany z GBA i komputerem z systemem Windows XP. Za pomocą zastrzeżonego oprogramowania flashera i sterowników komputer przesyłał do GBA program multi-boot, który z kolei był używany do przesyłania pliku binarnego gry z komputera do Flashcarta umieszczonego w GBA. Ogólnie rzecz biorąc, całe zadanie przesyłania gry zostało uznane za powolne. Późniejsze Flashcarty (takie jak ‘EZ-Flash’) oferowały większą pamięć i możliwość programowania bez konieczności używania GBA jako pośrednika [11]. Te ostatnie opierały się na pamięci wymiennej (SD, MiniSD, MicroSD lub cokolwiek innego).

Dostępność komercyjna tych kartridży okazała się szarą strefą: Nintendo potępiło ich używanie ze względu na umożliwienie piractwa, podczas gdy niektórzy użytkownicy bronili, że jest to jedyna metoda uruchamiania Homebrew (programów stworzonych poza studiami gier, a co za tym idzie bez zgody Nintendo). Argument Nintendo był poparty faktem, że flashery, takie jak EZ-Writer, pomagały użytkownikom łatać ROMy gier, aby mogli bez problemów działać w kartridżach EZ-Flash. Po bataliach prawnych Nintendo kartridże te zostały zakazane w niektórych krajach (np. w Wielkiej Brytanii). Niemniej jednak przetrwały na całym świecie.


To wszystko ludziska

Image
Mój GBA i kilka gier.
Szkoda, że nie ma podświetlenia!

Współpraca

Ten artykuł jest częścią serii Architektura Konsol. Jeśli uznałeś go za interesujący, rozważ darowiznę. Twój wkład zostanie wykorzystany na sfinansowanie zakupu narzędzi i zasobów, które pomogą mi poprawić jakość istniejących i przyszłych artykułów.

Donate with PayPal
Become a Patreon

Możesz także zakupić wydanie e-bookowe w języku angielskim. Zyski traktuję jako darowizny.

Image

Lista pożądanych narzędzi i najnowsze nabytki do tego artykułu są śledzone tutaj:

Interesting hardware to get (ordered by priority)

Acquired tools used

Możesz też pomóc proponując zmiany i/lub dodając tłumaczenia.


Copyright and permissions

This work is licensed under a Creative Commons Attribution 4.0 International License. You may use it for your work at no cost, even for commercial purposes. But you have to respect the license and reference the article properly. Please take a look at the following guidelines and permissions:

Article information and referencing

For any referencing style, you can use the following information:

For instance, to use with BibTeX:

@misc{copetti-gba,
    url = {https://classic.copetti.org/writings/consoles/game-boy-advance/},
    title = {Game Boy Advance Architecture - A Practical Analysis},
    author = {{Rodrigo Copetti}},
    year = {2019}
}

or a IEEE style citation:

[1]R. Copetti, "Game Boy Advance Architecture - A Practical Analysis", Copetti.org, 2019. [Online]. Available: https://classic.copetti.org/writings/consoles/game-boy-advance/. [Accessed: day- month- year].

Special use in multimedia (Youtube, Twitch, etc)

I only ask that you at least state the author’s name, the title of the article and the URL of the article, using any style of choice.

You don’t have to include all the information in the same place if it’s not feasible. For instance, if you use the article’s imagery in a Youtube video, you may state either the author’s name or URL of the article at the bottom of the image, and then include the complete reference in the video description. In other words, for any resource used from this website, let your viewers know where it originates from.

This is a very nice example because the channel shows this website directly and their viewers know where to find it. In fact, I was so impressed with their content and commentary that I gave them an interview 🙂.

Appreciated additions

If this article has significantly contributed to your work, I would appreciate it if you could dedicate an acknowledgement section, just like I do with the people and communities that helped me.

This is of course optional and beyond the requirements of the CC license, but I think it’s a nice detail that makes us, the random authors on the net, feel part of something bigger.

Third-party publishing

If you are interested in publishing this article on a third-party website, please get in touch.

If you have translated an article and wish to publish it on a third-party website, I tend to be open about it, but please contact me first.


Źródła / Czytaj Dalej

Przeciwdziałanie Piractwu

Audio

CPU

Gry

Grafika

System Operacyjny

Fotografia